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MINIMAL CUBATURE FORMULAE OF 
TRIGONOMETRIC DEGREE 

RONALD COOLS AND IAN H. SLOAN 

ABSTRACT. In this paper we construct minimal cubature formulae of trigono- 
metric degree: we obtain explicit formulae for low dimensions of arbitrary 
degree and for low degrees in all dimensions. A useful tool is a closed form 
expression for the reproducing kernels in two dimensions. 

1. INTRODUCTION 

This paper is concerned with the identification and discovery of cubature for- 
mulae of trigonometric degree with the lowest possible number of points for the 
evaluation of integrals of the form 

(1) I[f] = j... j f(xi,... ,Xn)dxl... dxn = L f(x)dx. 
O O [~~~~~~~~~~0,1]n 

A trigonometric monomial in the variable x = (x1, x2, ... , Xn) is a function of 
the form 

(2) f : C: (x1,x2,... Xn) -* e2 a11e2 i .2.2 . e2TianXn 

where a,,a2,. ... )an E Z and i2 --1. The degree of this monomial is El=1 IceiI. 
The set of all finite linear combinations of trigonometric monomials is the space of 
trigonometric polynomials, denoted by Tn. The degree of a trigonometric polyno- 
mial is the maximum of the degrees of the monomials used in the linear combination. 
The subspace of all trigonometric polynomials of degree at most d is denoted by 

A cubature formula 
N 

(3) Q[fI = Zwjf(x(j)) , wj E R , x(j) E [0, 1), 
j=1 

is of trigonometric degree d if Q[f] = I[f] Vf E TndP, and if there exists a polynomial 
of degree d + 1 for which Q[f] $4 I[f]. We are interested in cubature formulae of 
trigonometric degree d for which the number of points N is as small as possible. 

As in the study of cubature formulae of algebraic degree, a useful tool is the 
reproducing kernel (see ?2). The important feature of the reproducing kernel is 
that it allows minimal cubature rules to be definitively characterized. The concept 
of "reproducing kernel" was first used for the construction of cubature formulae of 
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algebraic degree by Mysovskikh in 1968 [5]. It has been applied to derive properties 
of cubature formulae and to construct low-degree formulae (see, e.g., [4, 6]). It was 
again Mysovskikh who introduced it into the field of constructing cubature formulae 
of trigonometric degree, in 1985 for the one-dimensional case [7] and in 1990 for the 
multivariate case [10]. The use of the reproducing kernel has been limited because 
no easy expression for it was available, and perhaps also because for the algebraic 
case the lower bound to which it is related is seldom attained. 

A key result in the present paper is a closed-form expression for the 2-dimensional 
reproducing kernel. With the aid of this expression we are able to find new fami- 
lies of 2-dimensional minimal formulae of odd degree. Interestingly, for d > 3 the 
cubature formulae contain a number of real-valued free parameters (see ?6). A con- 
sequence is that we are able to construct 2-dimensional minimal cubature formulae 
which are neither lattice rules nor translations of lattice rules. For a discussion of 
lattice rules see [18, 19]. 

We conclude this section by collecting some known results concerning the di- 
mension of the space Td and related matters. Let r(n, d) denote the number of 
monomials (2) in n variables of degree d. Using combinatorics, one can show (see 
[8]) that 

n 

E(nI) (dI - 1) 

with 
T(n, 0) = 1, 

where we have used the convention 

(a=0 if b>a. 
b 

A very useful expression is 
d-r(n, d) = nT(d, n). 

Example 1.1. 

T(1, d) = 2, T(n, 1) = 2n, 

r(2, d) = 4d, Tr(n, 2) = 2n2, 

'r(3, d) = 4d2 + 2, r(n, 3) = 2n(2n2 + 1), 

T(4,d)= 8d(d2+2), Tr(n,4)= 2n2(fn2+2). 0 

Let t(n, d) denote the number of monomials (2) in n variables of degree at most 
d. Then (see [8]) 

t(n, d) = dim'T = ZT(n, 1) = 2 (n) (d)2. 
1=010 

Note that t(n, d) = t(d, n). 

Example 1.2. 

t(n, 1) = 2n + 1, 

t(n, 2) =2n2 + 2n + 1, 

t(n, 3) = 3 (2n + 1)(2n2+ 2n + 3), 

t(n, 4) = (2n4 + 4n3 + On2 + 8n + 3). 0 
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Lemma 1.1. The number of monomials (2) of degree at most d with the same 
parity as d is r(d+l,n) 2 

Proof. A combinatorial proof is given in [9]. A proof by induction is given in [1]. E 

2. THEORY 

In this section we cover the present theory. Much of this theory is well known 
to Russian authors. A side effect of our effort to make this paper self-contained 
is that these results now become more accessible. We have provided some shorter 
proofs in places and included some links to the better-known algebraic case. This 
theory is needed as background to our new result in ?4. 

Let 

Ad={k E Zn :O<ZElkl < J} 
1=1 

so that IAd = dim TndJ = t(n, LdJ). An important role is played by the t(n, LdJ) x 
N matrix M with elements 

(4) Mkj = wje 2rikx(i) k E Ad 1 j < N. 

Because the product of two trigonometric polynomials from T n is a polynomial 
of degree < d, demanding that the cubature formula Q has trigonometric degree d 
implies 

(5) 
N N 

Vk, k' eA : Q[e21ri(k-k')x] - =we2ri(k-k)x = MkijMk = 6kk', 
j=1 j=1 

which can be written as 

(6) MM* = I, 

where M* denotes the Hermitian conjugate of M and I is the identity matrix. 

Theorem 2.1. A cubature formula (3) for the integral (1) which is of trigonometric 
degree d has its number of points N bounded below by 

N > dimT n = t~ d2 
Proof. Since the rows of the t(n, LId) x N matrix M are orthogonal, it follows 
immediately that N > t(n, LJ). [1 

This almost evident result was given by Mysovskikh [8, 9] who also derived 
the corresponding result for the case where the integral (1) contains a general, 
nonnegative weight function. The resemblance with the corresponding result for 
cubature formulae of algebraic degree, whose history can be traced back to [14], is 
striking. 

The following theorem appears as a corollary in [1]. 

Theorem 2.2. If the cubature formula (3) for the integral (1) is of trigonometric 
degree d and N = t(n, LJd), then the weights are given by w = j j = 1, ... ,N. 
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Proof. The hypothesis makes the matrix M in (4) square, and (6) makes it orthog- 
onal. Therefore its columns are orthogonal: 

S Mkj'Mkj = 6j , for 1 < jJ' < N, 
kcAd 

or 

(7) \j Wi, >3e22rik (x(j)-x(j')) 6s 
kEAd 

Let j j'. Then (7) becomes 

w 5 1 wjt(n,L wjN = 1, 
kc-Ad 

thus wj= for j=1, 2,, N. E 

Let 

(8) K(x,x') E e2,ik(x-x') 

kEAd 

Then K(x, x') is a reproducing kernel in the space T1n d: for if f e 
Tnd2, then f 

coincides with its Fourier series, so that 

f (a) = 5 I[f (X)e-2,ik xle2wik a 

kEAd 

= I[f (x)K(a, x)]. 

The reproducing kernel K(x, x') plays an important role if d is even. 

Theorem 2.3. If d is even, a necessary and sufficient condition for points x(i), 1 < 

j < t(n, 4), lying in [0, 11T to be the points of an equal-weight cubature formula of 
trigonometric degree d is 

(9) K(x('),x(i )) N8j,, < j, j' < N, 

where N = t(n, d). 

Proof. Assume that d is even and let wj = for j 1, 2,... ,N. Then (9) is 
equivalent to 

M*M I. 

Because M is here a square matrix, this is equivalent to (5). Because d is even, 
(5) is equivalent to the statement that Q is of degree d, since for d even every 
trigonometric monomial of degree < d can be written in the form e27i(k-k') x with 
k,k' C Ad. L 

Example 2.1. The 1-dimensional case. 
In this case 

(10) Ad {k E 2:Ldj k < LdP 

and 
l X d 
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The reproducing kernel (8) is given by 

K~~x~x') - 
sin ir(2L'J ? 1)x - x') (X vX) = E e27rik (n) r(2 L -) xx' XX 

k=-L d 
J 

It has zeros at 

(11) x-x' = Ldj , j E 2, 
21~ ? +1 

provided x -x' Z 7. The equal-weight quadrature formula with N = 2Ld + 1 

points 
E 1?+e 2LJA +E 

2LdJ + 1 2LdJ + ' 2LJ?1 

with e C [0, 2L A+1] has differences between its points satisfying (11). This quadra- 

ture formula, which is the (shifted) rectangle rule, is of trigonometric degree 2L1J. 
If d is even, the rule is of degree d, in conformity with Theorem 2.3. If d is odd, 
note that the rule is not of degree d, because the monomial e2Xidx = e2 i(2Ldi+1)x 

is not integrated exactly. 
Note that this result was-with the use of the reproducing kernel obtained by 

Mysovskikh [7], who has also derived the corresponding result for a general non- 
negative weight function. In [7] it is proven that in the case of a constant weight 
function there is no quadrature formula of highest trigonometric degree other than 
the rectangle rule. K 

Given a E Rn, let {a} E [0, I)n denote the vector each of whose components 
is the fractional part of the corresponding component of a. A cubature formula 
maintains its trigonometric degree if all points are shifted by a constant vector c, 
with points that are moved out of the region of integration replaced by the related 
point inside [0, 1)n, i.e., if each point x(j) is replaced by {x(j) + c}. We shall 
generally take advantage of this degree of freedom by choosing 0 to be one of the 
points of our cubature formulae. 

Definition 2.1. A cubature formula (3) for the integral (1) is shift symmetric if 

whenever (x~j)... ,x(j)) is a point of the formula so is {(xPj) + i,. ,X ? 2)}' 

with both points having the same weight. 
Thus, N is even for a shift symmetric cubature formula, and in a formula of this 

kind the points can be relabelled so that the formula can be written as 
N 

(12) Q[f] (f(x(j)) + f() 1 1 
j=1 

In a similar way we may speak of a set of points in [0, I)n as being shift symmetric. 
In any such set we shall assume that the points are labelled as in (12), so that 
among the first N entries no pair differs by ( , 1, ?)) This symmetry has 
similar consequences as the more familiar central symmetry for cubature formulae 
of algebraic degree [1]. 

Lemma 2.1. Every monomial of odd degree is integrated exactly by a shift sym- 
metric cubature formula. 
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Proof. Using the shift symmetric cubature formula (12) we obtain 
N 
2 

Q[e27ik-x] = W j(e2rik x(j) + e2-7ik-(x(j)+( 2. )) 

j=1 

N 
2 

= S wje2rikx(3) (1 + eri(kl+?kn)) 
3=1 

N 
2 

= Ewje2rikx(3)(1 + (-1)kl+...+kl) 
1=1 

Thus 
n 

Q[e27ik X] = O if E Ikj I is odd. C] 
j=1 

Let 
(13) 

n n 
Am :={k EZn: O < kj < m, E I of the same parity as m}, 

j=1 j=1 

so that, according to Lemma 1.1, JAml = 2(m21') 
In the search for shift symmetric cubature formulae, an important role is played 

by the (m+ln) x N matrix L with elements bythe 2 2 

(14) Lk = j2weik-X(a), k E A < j < N 

The product of two trigonometric monomials whose degrees have the same parity 
is of even degree. Moreover, every even-degree monomial of degree < 2m can 
be written in the form e27ri(k-k') x with k, k' E Am. Remembering that a shift 
symmetric cubature formula is exact for all odd-degree monomials, we see that a 
shift symmetric cubature formula has trigonometric degree 2m + 1 if and only if for 
all k, k' E Am 

N/2 

Q[e2ti(k-k')-x] S w(e2i(k-k')-x(j) + e2i(k-k')-(x(j)+(... 2))) 

j=1 

N/2 

- S 2wje2ri(k-k') x(3) 

j=1 

N/2 

= E LkjLk'j 
j=1 

= kk', 

which can be written as 

(15) LL* = I. 

The following theorem also holds without the assumption that the cubature formula 
is shift symmetric. A proof of this is presented by Mysovskikh [8]. This result is 
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also given by Noskov [11] who simply refers to an analogous result for the algebraic- 
degree case proven by Mbller [4]. We prefer to present it here to keep the paper 
self-contained and because with the shift symmetric assumption the proof becomes 
very easy. 

Theorem 2.4. A shift symmetric cubature formula (12) for the integral (1) which 
is of trigonometric degree 2m+ 1, m E N, has its number of points N bounded below 
by 

N > r(m+ ,n) = 2Am. 

Proof. Since the rows of the r(m+l,n) x N matrix L given by (14) are orthogonal, 2 2 
it follows immediately that 

N. r(m + 1, n)=IAIC N > TJm?1l.~ 
L 

2- 2 

The following theorem appears as a corollary in [1]. 

Theorem 2.5. If N = T(m + 1, n) in a shift symmetric cubature formula (12) of 
degree 2m + 1 for the integral (1), then wj = = 1 j 1, 2, ... , N. 

Proof. Analogous to the proof of Theorem 2.2. El 

Let 
K(x, x') = E e2rik(x-x') 

kEAm 

Then K is a reproducing kernel in the space spanned by the monomials e21ikX, 

k E Am. 

Theorem 2.6. A necessary and sufficient condition for a shift symmetric set of 
points x(), 1 < j < Tr(m+ 1, n), to be the points of an equal-weight cubature formula 
of trigonometric degree 2m + 1 is 

- 
U U))= 1 K(x ,x~i )) =2 bjj, ,1 j, < 2 ' 

where N = Tr(m + 1, n). 

Proof. Let wj = 1 for j = 1,2,... ,N. Then the condition in this theorem is 
equivalent to 

L*L = I, 

where L is given by (14). Because L is a square matrix, this is equivalent to 

LL* =I 

which is the necessary and sufficient condition (15) for a shift symmetric cubature 
formula to be of trigonometric degree d = 2m + 1. 

Example 2.2. The 1-dimensional case with d odd. 
Putting d = 2m + 1, we have 

Am = {-m,-m+2,... ,m-2,m}, I Aml = m+ 1, 

and 
-~ ) E e2in(x-) -sin 2ir (mn ? 1) (x - x') 

K (x, x') -2(x_-__ _ _ _Z. 
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TABLE 1. Minimal number of points 

l ll dimensionsnl 

degree 1 2 3 4 5 

1 2 2 2 2 2 
2 3 5 7 9 11 

3 4 8 12 16 20 
4 5 13 25 41 61 
5 6 18 38 66 102 
6 7 25 63 129 231 
7 8 32 88 192 360 
8 9 41 129 321 681 
9 10 50 170 450 1002 

10 11 61 231 681 1683 
11 12 72 292 912 2364 
12 13 85 377 1289 3653 

This has zeros at x-x' (m+l) j E provided 2(x - x') , Z, corresponding to 
the fact that the equal-weight quadrature formula with the N = 2(m + 1) points 

01 1 2 1 2m+ 1 

2(m+1) ' 2(m+1) ' ' 2'"' 2(m+ 1) 

is a shift symmetric quadrature formula of degree 2m + 1 = d. (Note that the 
1-dimensional formula in Example 2.1 has an odd number of points, and so is not 
shift symmetric.) 

The note added at the end of Example 2.1 is also relevant for this case. 0 

The lower bound for the number of points in an odd-degree formula from Theo- 
rem 2.4 is higher than the lower bound of Theorem 2.1. Based on these theorems, 
we introduce the following definition: 

Definition 2.2. A cubature formula of degree d is called minimal if its number of 
points N satisfies 

N = t(n, m) if d = 2m, 

N=T(m+1,n) if d=2m+1. 

Table 1 gives the minimal number of points for various values of the dimension 
and the degree. 

A simplifying aspect of the trigonometric case is that the reproducing kernel is 
a function of one variable: 

KJ(x, x') = IC(x - x') 

with 

(16) IC(x) = Ee2ikx 

kEAd 
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and 
k(x, x') = k(x - x') 

with 

(17) K(x) = E e 

kits 

3. LOW-DEGREE MINIMAL FORMULAE IN ALL DIMENSIONS 

In this section we collect known results. However, the original proofs of the 
theorems do not use the reproducing kernel. 

From Lemma 2.1 it follows immediately that the cubature formula 

12 

is a minimal formula of degree 1, because it is shift symmetric. This cubature 
formula is mentioned in [9, 10]. 

Theorem 3.1 ([13]). The cubature formula 

1 2n+1( r~rfl-\7P() i 2j ___ QVI] - a, E dn - i)2n j=1 2n+1'2n+1' 2n+ I 

is a minimal cubature formula of degree 2. 

Proof. With d = 2 the number of points in a minimal formula is t(n, 1) = 2n + 1. 
Also, A2 = {(0, ... , O), (1, 0 ... , 0), ... , (0 ... ., +1)}, thus the reproducing 
kernel (16) gives 

n n 

KZ(x) = 1 + E e27rixl + E-27rix 
1=1 1=1 

n 

= + 2 E cos(2xxl). 
1=1 

For the formula under investigation the lth component of x(j) is 

xi 2n +} I 1 <j1<2n+1 1<1<n, 

and so, for j =, j', 

K(x(j) -_xI(c)) = 1 +2 cos 27r+j1 ) = 0. 0 

Theorem 3.2 ([12]). The cubature formula 

1 4n j 3j (2n -1)j Q[f] =4 zf ({t4n'i4n'L ' 4n 

is a shift symmetric minimal cubature formula of degree 3. 

Proof. With d = 3, the number of points in a minimal formula is r(2, n) = 4n. The 
rule is shift symmetric because for j = 1, 2,... , 2n the cubature point corresponding 
to j + 2n is the cubature point corresponding to j shifted by (? I 

' i2... ?) 
For the proof that the rule is of degree 3 see [12], or use Theorem 2.6. C 
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All of the explicit minimal cubature formulae quoted above are lattice rules of 
rank 1 (see [18, 19]). That is to say, they can all be written as a single sum of the 
form 

N 

=1 (18) QQ jN} 

with z E En. More generally, any lattice rule having N distinct points may be 
expressed as 

N, Nt ( t{ 

NIN2* ...Nt Ei 
SE 
it= tSm.= Nm , 

where t E Z, N = NMN2 ... Nt and Zm E En; its rank is the minimum possible 
value of t in such an expression. 

4. CLOSED FORMS FOR THE 2D REPRODUCING KERNEL 

In this section we obtain closed-form expressions for the reproducing kernels IC 
and K in two dimensions. Such closed-form expressions provide a useful tool for 
the discovery and analysis of minimal cubature formulae. 

Let A be a nonsingular linear transformation acting on Rn. Then we can write 
(16) as 

IC(x) = e27ri(Ak) ((AT 
'X) - 

e27iN 
((A5T)-X) 

kGAd K ECAAd 

where the final sum is over the transformed set AAd. The summation task can 
sometimes be simplified by choosing A so as to rotate the coordinate system. In 
particular, for the 2-dimensional case let A be the linear operation which rotates k 
by ir/4 clockwise and reduces its Euclidean magnitude by a factor A. Thus, 

( 1/2 1/2 
(19) A=(-1/2 1/2 J 

Then 

(20) IC(x) = E e27iy 
ICEAAd 

with 

(21) y= (A T)x. 

This is illustrated in Figure 1 for the case d = 10 or d = 11. The left-hand 
diagram shows the original summation region with respect to k, while the right- 
hand diagram shows the summation region with respect to n = Ak. 

Let ,. = (I, K2)T. The sum in (20) can be expressed as the aggregate of separate 
sums over integer- and half-integer lattices: 

AZ(x) = FI(y) + F2(Y), 
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5 

4 -,/,\ ki Ak = I 

S * ' 

2-~ ~ ~ ~ ~ ~ ~~~~~1 

0-~ ~ ~ ~ ~ ~ ~ ~~~0 

-4 -2 -1 0 1 2 

-5-4-3-2-1 0 1 2 3 4 5 

FIGURE 1. Summation lattices 

where 

:iA1 12 Ad 1 12 dI 

Fi(y) E e2=ri-.y E e27'yj E e'2r 

Kl1,K2= 12 A2 I Kl=-2 12 AdI 2=-12 Ad I 

sin(ir([dj + l)yi) sin(7r(L2j + l)Y2) 

sin(iryi) sin(iry2) 

1! A 12 

F2(Y) = e2iy sin(ir[flyi) sin(i7r[L j Y2) 2 (Y) ~ ~~7 sin~(ryi) sin(l7rY2) Kl1,KM2=-12 L 2 I + 12 

Hence, 

cos(7r([dj + l)(yi - Y2)) - cos(7r([]j + l)(YI + Y2)) 

?O cos(rL7 j (YI -Y2)) -cos(L j (YI + Y2)) 

2 sin(iryi) sin(7ry2) 

cos(r(L dj ?+ )(Y1 - Y2)) cos( (YI - Y2)) 

-cos(r(LdIj + ')(Y1 +y2))cos( (yI +Y2)) 

sin(iryl) sin(7ry2) 
g (Y1-Y2) 9(Y1+Y2) 

sin(iryi) sin(7ry2) 

where g(z) = cos(7r(2 [j + 1)z) cos(irz). 
From (19) and (21) we know that 

YI = x1 + x2 and Y2 =X1 ? x2, 

so 

(22) K(X) = g(xI) 
- g(X2) 

sin(7r(X2 ? xi)) sin(i7r(X2 - XI)) 
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During the calculation of IZ(x) we already obtained an expression for IC(x). Indeed, 
for d= 2m + 1 

A(x) = E e2rikx = Fi(y) 

kGAm 

sin(7r(m + l)yi) sin(ir(m + l)y2) 
(23) sin(7ryi) sin(7ry2) 

cos(ir(m + l)(Yi - Y2)) - cos(rr(m + l)(yi + Y2)) 

2 sin(7ryi) sin(7ry2) 
cos(27r(m + 1)xI) - cos(2-r(m + 1)x2) 

2 sin(7r(x2 + xi)) sin(r7r(x2 - XI)) 

We will also use (22) and (23) for xli X2 = 0: the limit of the right-hand side of 
these expressions is well defined. 

Note that in the context of summability of multivariate Fourier series, the ex- 
pression (16) is called a Dirichlet kernel. An expression equivalent to (22) was 
obtained by Herriot [3]. 

5. THE 2D EVEN-DEGREE CASE 

For n = 2 and even degrees d = 2m, m e N0 = N - {0}, the lower bound from 
Theorem 2.1 becomes 

N > t(2, m) = 1 + 2m + 2m2 (d + 1)2 + 1 
2 

Known minimal formulae are the Fibonacci lattices with 5 and 13 points: 
5 E=1 f ({, 5 }) has degree 2 and N = 5, 

1 L1 f ({f , }) has degree 4 and N = 13. 
Note that the above formula of degree 2 is geometrically equivalent to the one 
presented in Theorem 3.1 with n set equal to 2. 

The formulae given above are the only minimal formulae of even trigonometric 
degree among the Fibonacci lattice rules [1]. However, they belong also to another 
class of formulae discovered by Noskov [13]: 

Theorem 5.1. The cubature formula 

1 ' ({ }) ih (d+1)2+1 

and with a = d + 1 or a = N - (d + 1), is a minimal cubature formula of even 
degree d. 

Proof. The number of points N is equal to the minimum number of points for 
cubature formulae of even trigonometric degree d. According to Theorem 2.3 it is 
then sufficient to check whether the difference between every pair of different points 
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of the cubature formula is a zero of (22). Now for j =7 j' and I = j - j' 

K(x(j) -x(')) = K (- ' 
,(j )) -: (lc da) 

ir(d+l)l CO rl _ iO r(d+l)ad rral COS N COSN COS N COS-yy 
N11 N N1flN 

sin Xt(N~ sin N( 
7r(d+ 1)l rrl ir(d+ 1)21 7r (d+ 1)l1 COS N COSN OS N COS N 

sin I(d+2) sin 'rid SlI N 

Because 

C r(d +1)21 
C r(2N-1)l 

N N 

= COS 

the numerator of AC(x(j) - x(j')) is 0. The denominator of AC(x(j) - x(j')) is always 
different from 0 when j 7- j', by the following argument. The factor sin ld vanishes 
only if 

Id = sN for some s E 2. 

Since d is even and N is odd, s must be even. Putting s = 2m, the condition 
becomes 

1 = 2N = m (d+2+ 

As I is an integer, we see that d must divide m, from which it follows, since 1 7 0, 2 
that (ml > d, and hence 

|l> 2 (d+2+ d =N. 

By a similar argument, sin NI(d+2) vanishes for 1 74 0 only if Ill > N. Taking these 
together, the denominator does not vanish for 11l in the range 1, 2, .. , N - 1. 0 

Remark. Noskov proved this theorem [13] by direct application of the cubature 
formula to the trigonometric monomials of degree < d, with d even. This approach, 
although very useful to check formulae, cannot be used to construct them. 

6. THE 2D ODD-DEGREE CASE 

For n = 2 and odd degrees d = 2m + 1, m E N0, the lower bound from Theorem 
2.4 becomes 

N>T(m+1,2)=2(m+1)2 (d ?1)2 

2 
Theorem 6.1. The points 

C / C . +2p j = 0,... ,2m+1, 
2(m+1)'CP 2(m?+) p = 0,.... ,m, 

with Co = 0 and Cl,.. . , Cm arbitrary, are the points of a shift symmetric minimal 
cubature formula of trigonometric degree 2m + 1. 
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Proof. According to Theorem 2.4 the number of points 

N = (m+ 1)(2m+2) = 2(m+ 1)2 = T(m+ 1,2) 

is the minimal number of points for a cubature formula of degree 2m + 1. The set 
of points is shift symmetric, since, if j is replaced by j i (m + 1), then the point is 
shifted by (2, ') modulo 1. According to Theorem 2.6 it is then sufficient to check 
whether the difference between every pair of different points satisfying 0 < j, j' < m 
is a zero of k. We write x-x' = (Ax, Ay), so (23) becomes 

(24) k(AX, AY) -cos(2ir(m + I)Ax) - cos(2ir(m + l)Ay) 

(24Ax,'~ 
Y 2 sin(ir(Ay + Ax)) sin(ir(Ay - Ax)) 

If Ax = +Ay, then we can use 

(25) lim FZ(Ax, Ay) = (m + 1) sin(2ir(m + 1)Ax) 
?Ay--~~~~Ax ~sin(27rAx) 

From (24) there follows a necessary condition for the points: 

AZ(Ax, Ay) = 0 

cos(2ir(m + 1)Ax) = cos(2ir(m + 1)Ay) 

2ir(m + 1)Ay = 2irl + 2ir(m + 1)Ax, 1 E Z 

(26) Ay= m 1 Ax, I E Z . 

It is obvious that all pairs of points satisfy this condition since Ax = ACp + ? ) 2(m+l)' 

Ay = ACp + ?j+2Ap and so 

(27) Ay-Ax = 
A 

m?1 

Condition (26) is not sufficient because the denominator of (24) can also be zero. 
Now the denominator vanishes if and only if Ay = 1 + Ax, 1 E Z. If Ay = 1 + Ax, 
then (25) gives a necessary and sufficient condition: 

* &(Ax,l +Ax)= C(Ax,+Ax) =0 

sin(2ir(m + )Ax) =0 
sin(2irAx) 

(28) Ax= 2 l) I Z\{'(m + 1) : 1' Z Z}. 
2(m?+ 1)'1 

Now from (27), Ay - Ax E Z only if Ap = 0 (since IApj < m + 1), which, if the 
points are distinct, implies Aj $& 0. In this situation, Ax = -k-- satisfies (28), 2(m+l) 

since 0 < IAjJ < m + 1. On the other hand, 

Ay + Ax = 2ACp + Ai+AP 
m?1' 
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which can be an integer only if 2(m + 1)ACp E 2, implying in turn 2(m+ 1)Ax E 2, 
so that Ax satisfies (28) so long as 2Ax ' 2. But if 2Ax E Z and Ay + Ax E 2, 
then Ay - Ax E 2, which is the case already considered above. D 

Remark. Again, the theorem can also be proved by direct application of the cuba- 
ture formula to the trigonometric monomials of degree < 2k + 1. 

Second proof of Theorem 6.1. Using fop (x, y) - e2li(ax+?/y) we consider 

2m+1 m j ? 
Qfl - x, fV a(CP + 2 CP + L 

N?3] 
- N 

= 2m+2' 2m+2 

2m+1 m 
= 1 E E~e27ri(a(Cp+ 2 +2)+(P 2)) 

j=O p=O 

m 2m+1 

N 5e21 ri(a Cp+f(Cp+2p2)) 5 (e27 q2n+2)3 N p=O j=O 

The sum over j is 0, unless a + 3 is a multiple of 2m + 2. Since we are concerned 
only with showing that the rule is of degree 2m+ 1, we may assume ac +/3 < 2m+ 1. 
Thus, we have shown 

Q[fa] = 0 unless a =-. 

So now assume a =-/. Then 

2m? 2 2iri,3 2p 
Ee 2m+2 

p=O 

2m+ 2 N 

N /Ee 
p=o 

= 0 unless / is a multiple of m + 1. 

Now since -degree fa < 2m + 1, we have 

jal+1+,31 < 2m+ I X~ 21,31 < 2m+1 X 1,31 < m. 

Hence, Q[f_,8] = 0 unless 3 = ae = 0. So Q is of degree 2m + 1. D 

Theorem 6.1 gives us an infinite number of minimal cubature formulae of odd 
degree d = 2m + 1, m E N, with m real parameters CpI p = 1, 2, ... , m. Interesting 
special cases for these parameters are: 

(1) CP = 2(m+1)2' p 1,. . , m. 

In this case the cubature formula can be written 

Q[f] = N f ({i J(2m + 3)}) 
j=1 

this is a rank-i lattice rule with generator (N, 2+P3). 
In [1] this result was obtained using the relation between the trigonometric 
degree and the dual lattice. 



1598 RONALD COOLS AND IAN H. SLOAN 

5/6 ' :5/6 

2/3 :2/3 

1/2 1/: . . A A ,1/2 

1/3 

X 

1/3 

0/ 1/-12 1 016 

0 1/6 1/3 1/2 2/3 5/6 1 0 1/6 1/3 1/2 2/3 5/6 1 

m= 2; N= 18; C1= - ; C2 =I m=2; N = 18; C1 =C2 = O 

FIGURE 2. Minimal formulae of degree 5 

(2) Cp =O0p~l M..m 
In this case the formula can be written as 

N l,k=O m+1 m+1 m+1' m+1 

the body-centered cubic rule [17]. This is a lattice rule of rank 2; that is to 
say, it cannot be written as a single sum of the form (18). The fact that the 
body-centered cubic rule is a minimal cubature formula was established in, 
e.g., [11, 15, 16]. 

Example 6.1. A shift symmetric minimal cubature formula of trigonometric de- 
gree 5 (i.e., m = 2) has 18 points. Selecting Ci = 1 and C2 = 2 in the formula 18 i78 
described in Theorem 6.1 gives the rank-1 rule 

1 E8 E i{ 7i } =18 

Selecting Ci = C2 = 0 in the formula described in Theorem 6.1 gives the body- 
centered cubic lattice 

1 _ 3 3 3 6 3 6 

These formulae are pictured in Figure 2. 
In both cases (and indeed with any choice of Cl,... , Cm) all points lie on m+1 = 

3 lines having unit slope, with each line containing 2m + 2 = 6 equidistant points. 
It should be understood that lines that leave the unit square at the top re-enter at 
the bottom, because we have to look at the square modulo 1. Similarly, lines that 
leave the unit square at the right re-enter at the left. In the diagrams the m + 1 = 3 
such lines are identified by dashes of different lengths. Changing the value of Cp 
corresponds to sliding all of the points on the pth line along that line. 

This last example serves as a useful counterexample to the otherwise plausible 
hypothesis that all minimal cubature formulae of trigonometric degree are necessar- 
ily lattice rules, or translations of lattice rules. The two particular special choices of 
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C1, C2 considered above, and illustrated in the figures, do indeed give lattice rules, 
but most other choices of C1, C2 clearly will not yield lattice rules. For example, a 
necessary condition that the rule in Theorem 6.1 be a lattice rule is (see [18, 19]) 
2(m+ 1)2Cp E Z forp= 1,2... ,m. K 

7. CONCLUSION 

In this paper we exploited the reproducing kernel to construct minimal cubature 
formulae of trigonometric degree 1,2 and 3 for arbitrary dimensions, as well as 
minimal cubature formulae of arbitrary degree for 1 and 2-dimensional integrals. 
The results for odd-degree formulae for two dimensions are new. We also obtained 
closed-form expressions for the reproducing kernels for one- and two-dimensional 
minimal cubature formulae. 

We know of only one additional minimal cubature formula. Noskov [12] con- 
structed a cubature formula of degree 5 for three dimensions with 38 knots: 

Q~] 38 Lf (381 3-8 38 } 

His formula is geometrically equivalent with the one constructed by Frolov [2], 
published with some typographical errors. 
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